
A wavelet analysis tutorial that even a psychologist could understand 

Thomas Gladwin (note in 2012: this is from a pre-PhD student-Thomas of many years 

ago, who was possibly quite drunk when he wrote this. That’s my excuse anyway and 

I’m sticking with it.) 

Preface 

Wavelet analysis is a nice new technique applicable to EEG data that makes two 

things possible: an even larger amount of worthless psychophysiological posturing 

(but with prettier pictures) and a far deeper insight into the workings of the human 

brain. The second possibility requires the combination with other theories and 

techniques that map onto the information provided by wavelet analysis in some 

productive way. My guess is that wavelet analysis will need to be related to the 

behaviour of integrate-and-fire neural networks to really help neuroscience forward - 

advanced measurement techniques just sit around looking depressed on weak, ad hoc 

theories. 

The reason I think it was worthwhile to write this tutorial (actually, it’s just a set of 

sheets I added some text to) is that when I wanted to learn about wavelets it took a 

long time to gather the necessary information because so much background 

knowledge was assumed. For me, that wasn't the case at all - the prerequisites for the 

prerequisites weren't there - and it was hard to find any references explaining the 

meaning of all the formulae. 

I’ve tried to include, not a set of necessary mathematical tutorials, but hopefully 

enough information for anyone interested enough to be able to look up the details and 

for anyone disinterested enough to sail through the text and feel good about his or her 

astounding level of insight. 

Have fun with the tutorial, and please provide any feedback you feel might be helpful 

in improving it. 

The addition and decomposition of signals 

EEG signals may be decomposed into simple component (co-)sine-based signals 

oscillating at various frequencies (see below for a short introduction to oscillating 

signals). This principle is most easily understood by reversing the decomposition 

procedure. In the example below, the very simple cosine Y1(t) and the slightly more 

complicated cosine Y2(t) are added to produce the composite function Y3(t). 



Y1(t) = A * cos( 2 * π * 10 * t ) 

Y2(t) = A(t) * cos( 2 * π * 20 * t ) 

  

Y3(t) = Y1(t) + Y2(t) 

The goal of wavelet analysis is to work backwards from a composite signal to the 

simple component signals. Wavelet analyses are performed a frequency at a time; in 

the above example, wavelet analysis of the 20 Hz content of Y3(t) would have 

provided the characteristics of Y2(t). The goal of this tutorial is to explain what 

characteristics wavelet analysis reveals about component signals and how this is 

achieved. 

The characteristics of oscillatory signals 

The generic cosine function contains three parameters, A, O and P: 

Y(t) = A * cos(O*t + P) 

The cosine at the heart of the expression is an oscillatory function. Oscillatory 

functions fluctuate around a central value (usually zero) like a pendulum swings 

across its lowest point. The time it takes for the pendulum to swing from one extreme 



position to the other and back again is called the period. The period is directly related 

to the frequency which is simple (1 / period). If the period is given in seconds, the 

frequency is in Hertz (Hz), or oscillations-per-second. 

A, the amplitude of the cosine, is analogous to the maximum deviation of such a 

pendulum. A determines the vertical scaling of Y(t): how large the function’s 

deviations from zero are. O is the angle speed and determines the horizontal scaling. 

A larger O causes the function to run through its oscillation more quickly; it makes 

the pendulum swing faster. O is therefore directly related to the period and frequency 

of a signal. P, the initial phase, simply shifts the function over time. If P is zero, 

cos(O*t) is obviously equal to cos(O*t + P). If P is equal to half a period, cos(O*t + 

P) at time t returns the function value associated with the cosine at time t + a half 

period. 

An important distinction between oscillatory signals is whether they are stationary or 

non-stationary. The three parameters of stationary signals are constant whereas those 

of non-stationary signals are themselves functions of time. Wavelet analysis of a 

composite signal at a specified frequency provides a vector (a vector is a list of 

numbers where each number is associated with an identifying index-number) of 

amplitudes and phases for the component functions. 

Wavelets 

The basis of wavelet analysis is the wavelet function. Wavelets are a type of 

oscillatory signals that are localized in time, unlike, for example, sines and cosines. A 

well-known example of a wavelet is the Morlet wavelet: 



 

W(t) = exp( -a(t – b)² ) * cos ( ω(t - b) ) 

The wavelet is centered on time b because the amplitude A(t) = exp( -a(t - b)² ) of the 

signal becomes smaller at longer distances from the central time (A(t) is never larger 

than when (t - b)² is zero). 

Real and imaginary axes 

Wavelets contain a real and imaginary part. The real part is the function described 

above, the product of a Gaussian curve and a cosine. The imaginary part is the product 

of a Guassian curve and a sine. The idea of real and imaginary parts of oscillatory 

signals can be illustrated via the unit circle representation of a cosine. 

 



The projections onto the real axis are the function values of the cosine. 

The angle of the vector is the phase of the signal. The passage of time is represented 

by the clockwise rotation of the vector. Recall that vectors are a list of numbers. In 

this case the list has two elements: the real / cosine and imaginary / sine values. The 

arrow-representation of such a vector is drawn from the (0, 0) point to the (real value, 

imaginary value) point. The projections onto the axes are thus simply the function 

values. 

The length of the vector projecting into real and imaginary space is the amplitude 

parameter. Note, for example, that A * cos( 0 ) = A and A * sin( 0.5 * pi ) = A. As a 

general proof using Pythagoras’ theorem: 

A² = (A * cos( α )) ² + (A * sin( α ))², 

That is, the squared diagonal (the length of the vector which we claim to 

be A) is equal to the squared sides (the elements of the vector). The 

right-hand side can be rewritten as follows: 

A² * (cos( α )² + sin( α )²), 

And the term (cos( α )² + sin( α )²) is always equal to one (applying 

Pythagoras’ theorem to the unit circle). So we end up with A² = A², 

which is true, proving that the length of the vector projecting into 

“cosine / sine” space is the amplitude parameter. 

The successive function values of a cosine cos(x) over ascending x are represented by 

the projections onto the real axis associated with the clockwise rotation of the vector. 

The reason the imaginary part is interesting will become clear later on. The rationale 

of wavelet analysis as presented in this tutorial can be understood by remembering 

only that the imaginary part of oscillatory signals behaves like the same signal except 

for a time-shift. The term "imaginary" can then be understood to refer to the fact that 

all you actually see when you plot a cosine are the values on the real axis; the values 

on the imaginary axis only come into play when you invoke the rotating-vector 

representation, for example because that representation makes wavelet analysis easy 

to explain. 

However, there is a better reason that that, explained in the following section. The 

imaginary axis is actually called so because the values on that axis are so-called 

imaginary numbers. 



Imaginary numbers 

There are various kinds of numbers: positive integers (e.g. 1, 32, …), negative values 

(e.g. -1, -32, …), rational numbers (e.g. ½) and irrational numbers (pi, √2), for 

example. All these kinds of numbers are classed together as real numbers: they obey 

the fundamental laws of arithmetic. These laws, listed below, determine how numbers 

behave when mathematical operators are applied to them: 

The commutative and associative laws of addition and multiplication. 

a + b = b + a ‘ca’ (a + b) + c = a + (b + c) ‘aa’ 

a * b = b * a ‘cm’ (a * b) * c = a * (b * c) ‘am’ 

The distributive law of multiplication and division over addition and subtraction 

e.g. (a + b) * c = (a * c) + (b * c) 

The powering laws below follow from the fundamental laws. 

an * am = an+m 

an / am = an-m 

(an)m = an*m 

One might wonder why numbers should have to obey the fundamental laws of 

arithmetic, regardless of whether the objects we usually measure with those numbers 

do tend to be so subservient. In fact, not all numbers do. Examples of non-real 

numbers are the imaginary and complex numbers. 

Consider the number j defined as 

j = √(-1) 

This number doesn’t follow the Rules. Consider squaring j: 

j² = j * j 

If j is real, let’s refer to this hypothetical real j as j~, it is either negative or non-

negative (zero or positive). At the moment, we don’t know which of the two j~ is, but 

that doesn’t matter. If j~ is non-negative then 



j~*j~ >= 0 

whereas if j~ is negative then 

j~*j~ = -1 * |j~| * -1 * |j~| = -1 * -1 * |j~| * |j~| = 1 * |j~| * |j~| >= 0 

So the Rules imply that squaring any real number j~ always results in a positive result. 

However, squaring j = √-1 results, by definition and formally from the third powering 

rule (an)m = an*m, in a negative number, namely -1. The number j thus disobeys the 

Rules and disqualifies itself from the membership of the real numbers. 

Imaginary numbers are numbers that are defined in such a way that they do not obey 

the fundamental rules of arithmetic, j being the prime example. j is actually the only 

imaginary number we need, as any imaginary number can be written as j * R, where R 

is a real number. For instance, √-9 = √-1 * 3 = j * 3. 

While j is an imaginary number, j² is not; j² is simply the negative number –1, so 

there’s no problem in working with that. Squaring j thus brings it back into the 

domain of real numbers. So, even though j is imaginary, it seems that it is not 

therefore ineffable. In contrast, imaginary numbers are no more mystical than real 

numbers and no less able to describe quite natural relations. The following example of 

this was taken from Isaac Asimov. 

Imagine you’re standing on the zero point of a line on which all the positive and 

negative numbers are represented and are looking out over the positive numbers, 

focussing, say, on 42. Multiplying by –1 has the effect of your turning around, 180 

degrees, and now you’re looking at –42. Multiplying by –1 again has you, as would be 

expected, completely turned around so you’re looking at 42 again. 

From your regained starting point, now multiply by j. Asimov’s analogy was that 

you’re now turned around a quarter instead of a half circle. So multiplying by j again 

would turn you onwards to half a circle away from your starting position, and this is 

indeed the case: j * j = -1. So this very simple analogy of what imaginary numbers do 

seems to work. 

The analogy can be further strengthened by multiplying by j, then by –1, and then 

by j again, which is equivalent to multiplying by –1 twice, doing nothing, or 

multiplying by j four times. So the mysterious j actually has a quite natural relation to 

the real numbers, namely a perpendicular one; that is, if, as above, + and – have a 

reversed relation of 180 degrees, j has a relation of 90 degrees. 



Now we’ve seen that numbers such as j, or numbers that are multiples of j, are 

imaginary and perpendicular to the real numbers, our new family of number can easily 

be expanded to include complex numbers. Complex numbers are simply the sum of a 

real and an imaginary number: 

Complex-value = Real-value + j * Imaginary-value 

A number that is the sum of two real numbers would fall somewhere on the line that 

contains the real numbers; likewise, a sum of imaginary numbers would fall on the 

imaginary axis. In contrast, a complex number can fall anywhere on the plane defined 

by the real and imaginary axis. 

A complex number is really a vector of two numbers, pointing to somewhere on the 

real – imaginary plane from the origin. Such a vector is defined by its elements, but 

also by the length of the vector and its angle. The elements of a complex number can 

be written using the cosine and sine of the triangle defined by the vector’s length and 

angle: 

R = length * cos angle 

I = length * sin angle 

This leads to the polar form of a complex number: 

Complex-value 

= R + j * I 

= length * cos angle + j * length * sin angle 

= length * (cos angle + j * sin angle) 

Now the relation between the cosine function and its associated imaginary sine turns 

out to be very simple. If the real values R(x) of a function f(x) follow a cosine, then: 

R(x) 

= length * cos angle 

= cos x 

So length = 1 and angle = x. From this and the perpendicularity of the imaginary axis 

which led to the expression for the imaginary value I: 



I = length * sin angle 

length = 1 

angle = x 

I(x) = sin x 

So we see that a real cosine function does indeed have, in a space defined by the axis 

of real numbers and the perpendicular imaginary axis, a vector representation that 

projects a sine function onto the imaginary axis. 

Inner products 

The inner product of two vectors is a measure of similarity, as illustrated by the 

following examples. See a text on matrix algebra for more details (e.g. on notation). 

The similarity-interpretation of inner products will be used later in the tutorial, where 

the comparison of the similarities of a signal with the real versus the imaginary parts 

of a wavelet will be shown to be the basic mechanism of wavelet analysis. 

(-1 0 1 0) * (-1 0 1 0)' = 2 

(-1 0 1 0) * (0 1 0 -1)' = 0 

(-1 0 1 0) * (1 0 -1 0)' = -2 

Note that, whilst the vectors are given above in vector notation, they could also be 

plotted as functions. 

The estimation of instantaneous amplitude and phase by convolution 

Wavelet analysis is based on the convolution of a wavelet of a given frequency with a 

signal. Convolution is, for the purposes of this tutorial, analogous to the calculation of 

the inner product described above, and is therefore a measure of similarity. The 

difference is that convolution is calculated for a continuous function instead of for the 

discrete elements of a vector (the same discrete – continuous relationship applies to 

variability and power). The convolution is performed for both the real and the 

imaginary parts of the wavelet. Because signal components will only be similar if they 

are of roughly the same frequency as the wavelet, the analysis automatically selects 

relevant signal components. 

The instantaneous amplitude (A(t) in y(t) = A(t) * cos ( x ) for a given t, or instant in 

time) is proportional to the length of the vector pointing to the values of the real and 



imaginary convolutions. Note that the reason both the real and imaginary axes are 

necessary is that the real convolution in isolation would oscillate along with the 

signal. The combined convolution therefore abstracts the amplitude parameter from 

the actual signal values. 

The phase can be defined as the angle of the vector with the real axis. A phase of zero 

means that the signal is in phase with a cosine beginning on the center of the wavelet. 

A phase-difference of zero between two signals means that they both overlap a 

wavelet with the same, arbitrary starting-phase. 

The following figure is an example of the real (black) and imaginary (red) parts of a 

wavelet: 

 

This wavelet is now superimposed on a signal (green) to be analyzed at the wavelet’s 

frequency: 

 

The convolution of the imaginary part with the signal is strongly negative (all 

contributing values are based on a minus-by-plus combination), whereas the real 



convolution is zero: there is no systematic relation between the positive and negative 

values of the signal with those of the wavelet. 

It can be inferred from this combination of similarities that the phase of the signal is 

(0.25 + 0.5) * period (the quarter period due because a sine can be written as a phase-

shifted cosine, the half because the signal and wavelet are in anti-phase) and that the 

amplitude is proportional to the imaginary convolution. 

If the signal had been shifted to be more similar to the real part of the wavelet, the 

imaginary convolution would have correspondingly decreased; visualized on the unit 

circle, the arrow would have turned to follow the shift in the signal. Only simple 

goniometry is needed to extract the length and angle of the vector from the two 

orthogonal (that is, angled at 90 degrees and therefore maximally unsimilar 

themselves) similarity dimensions. 

Example of the results of wavelet analysis at two frequencies 

In the figure below, the three rows show the raw signal, the instantaneous amplitude 

and the instantaenous phase. The right column shows the respective differences 

between the signals. 



 

Phase-locking measures are based on the instantaneous phase differences shown here 

in the lower-right plot. 

Localization in time and frequency 

Wavelets cannot be precisely localized in time or frequency. A wavelet cannot be 

precisely localized in frequency because it is not a pure (co-) sine. A wavelet cannot 

be precisely localized in time because a certain time-region of a function is necessary 

to determine similarity / to compute convolutions. 

The localization in time and frequency is (for the Morlet wavelet) a Gaussian function 

around a central time and frequency, not a single time point (as in the raw signal) or 

frequency (as in Fourier analysis). The localization can therefore be described in 

terms of mean and standard deviation in sec and Hz (sigma_t and sigma_f) 

respectively. 

The Gaussian localization curves indicate the influence of frequencies and time points 

at a distance from the mean; the broader the curve, the more influence distant points in 



time and frequency have and the higher the level of uncertainty of what part of signal 

is contributing to the convolution used to determine similarity. 

The influence of distant points determines the resolution of the analysis; for example, 

the broader sigma_t is, the more time points of the signal together contribute to 

computations concerning one time point of the analysis. 

Example of the time – frequency uncertainty relationship (from Tallon - Baudry, 

1995) 

 

Localization in time and frequency 

The relation between sigma_t and sigma_f is constant: 

sigma_f * sigma_t == 1 / ( 2 * π ) 

This constant relation implies that the poorer the resolution is in time, the better it is in 

frequency. 

The relation of sigma_f to frequency depends on the so-called wavelet parameter: 

sigma_f = f / param 



However, the parameter param may be adjusted at the whim of the researcher. If the 

param is kept constant, however, the analysis can be easily automatized and an 

interesting contrast with Fourier analysis is exposed. Fourier analysis (a common (co-

)sine-based method for decomposing signals that requires the assumption that the 

signals are stationary) does not adjust the temporal window to different frequencies; in 

contrast, wavelet analysis does take advantage of the reduced temporal uncertainty 

that becomes available at higher frequencies. Therefore, wavelet analysis has a better 

overall time – frequency resolution than short-term Fourier analysis. 

Example of the effect of sigma_f 

The raw signal plotted below contains a 40 Hz component with amplitude oscillating 

at 2 Hz. The three lower plots show the results of wavelet analyses, performed for 

three frequencies, using different wavelet parameters. The sigma_f for 40 Hz is given 

for each plot (note that the sigma_f will be larger for higher frequencies). 

Sigma_f = 2 Hz 

 

Sigma_f = 4 Hz 



 

Sigma_f = 10 Hz 

 

Phase-locking measures: the PLV 

The instantaneous phase of a signal can be represented as the angle of a vector of 

length 1 with the real axis on the unit circle. In these terms, the phase-difference 

between two signals is the result of vector-subtracting one signal’s phase-vector from 

the other. In vector subtraction the values of corresponding elements in two vectors 

are subtracted. 

Summation of the difference vector over trials and then taking the length divided by 

the number of trials provides the phase-locking value (PLV, Lachaux et al., 1995). 

The PLV is a measure for the consistency of the phase-difference over trials. The PLV 

can take values of 0 to 1, a value of 1 being achieved if all the phase differences are 

the same. In that case, vector-adding ("stacking") the difference-vectors leads to a 

maximal distance between the start of the first vector and the end of the last vector. 

The more variation between the trials, the more the string of vectors bunches up and 

the smaller the start - end distance. 

The figure below is from Lachaux et al. (1995) and shows two situations, one in 

which the phase difference is consistent and the PLV high, the other the reverse case. 



 

Phase-locking measures: the QPL 

The quasi phase-locking value (QPL) is based on the PLV calculated over time points 

in a trial instead of over the same time point on different trials. The difference 

between the two measures is that the PLV will respond to a specific phase difference 

that is consistent over trials, whereas the QPL responds to the more "higher-order" 

consistency of the consistency of any phase difference over time within a trial. The 

procedure for calculating the QPL is as follows: 

1. Select a number of adjacent time points as a segment of a trial. We used the 

samples within +/- 4 *  t ms around the mean time. 

2. Compute the intra-trial PLV over the time points of the segment. The values are 

weighted by a Gaussian curve around each analyzed time-point for the localization in 

time. Due to the smoothing effect of the wavelet (adjacent wavelets are largely based 

on the same set of samples), the intra-trial PLV will show an artifactual synchrony. 

However, as we are interested in changes over time and the artifactual synchrony is 

constant over time points this does not present a problem. 



3. Repeat 1 and 2 for every trial. 

4. Average the intra-trial PLV over all trials for the QPL value. 

The QPL thus does not require signals to have the same phase-difference over 

trials, just to be phase-locked over time within trials. 

C++ code 

This is a function taken directly from a program I wrote for signal analysis, SAL. I 

copied the algorithm from a program written by Ritske de Jong. The code made the 

wavelet analysis procedure easier for me to understand initially than its "analytical" 

mathematical representation, so it might be useful for you. 
void TfSpectro::performWaveletAnalysis(int s) 

{ 

 double wf_samplerate = fSignalPool->samplingRate; 

 if (wf_samplerate == 0) 

 { 

  fMain->inform("Error: zero waveform sample rate."); 

  return; 

 } 

 

 int nTimesConvRealZero = 0; 

 int iF = 0; 

 while (iF < nFMids) 

 { 

  inform("Signal " + IntToStr(s) + ", frequency " + IntToStr(iF)); 

  double f = fMids[iF]; 

  double sigmaF = f / param, 

         sigmaT = 1.0 / (2.0 * M_PI * sigmaF), 

         correctie = 2.0 / (wf_samplerate * sigmaT * sqrt(2.0 * M_PI)); 

// bereken wavelet waarden op 6*sigmaT_dp dp om tijd-midden 

  double sigmaT_dp = (sigmaT * wf_samplerate); 

  int breedte = (int)(6.0 * sigmaT_dp); 

  double *waveletReal = new double[breedte], 

         *waveletIm = new double[breedte]; 

  double maxWlVal = 0.0; 

  for (int wl_dp = 0; wl_dp < breedte; wl_dp++) 

  { 

   waveletReal[wl_dp] = exp( -0.5 * pow((double)wl_dp / sigmaT_dp, 2.0) ) * 

                         cos( 2.0 * M_PI * f * (double)wl_dp / wf_samplerate 

); 

   waveletIm[wl_dp] =   exp( -0.5 * pow((double)wl_dp / sigmaT_dp, 2.0) ) * 

                         sin( 2.0 * M_PI * f * (double)wl_dp / wf_samplerate 

); 

   if (waveletReal[wl_dp] > maxWlVal) 

   { 

    maxWlVal = waveletReal[wl_dp]; 

   } 

   if (waveletIm[wl_dp] > maxWlVal) 

http://www.thomasgladwin.byethost14.com/maths/SAL.zip


   { 

    maxWlVal = waveletIm[wl_dp]; 

   } 

  } 

// teken wavelet 

  int xmax = im_Info->Width, 

      ymax = im_Info->Height, 

      xmid = xmax / 2, 

      ymid = ymax / 2; 

  double dx, dy; 

  if (breedte > 0) 

  { 

   dx = (double)xmid / (double)breedte; 

  } 

  else 

  { 

   dx = 0; 

  } 

  dy = (double)(ymid) / maxWlVal; 

  im_Info->Canvas->Brush->Color = clWhite; 

  im_Info->Canvas->FillRect( Rect(0, 0, xmax, ymax) ); 

  for (int wl_dp = 1; wl_dp < breedte; wl_dp++) 

  { 

   im_Info->Canvas->Pen->Color = clBlack; 

   im_Info->Canvas->MoveTo( xmid + (int)(dx * (double)wl_dp), ymid - (int)(dy 

* waveletReal[wl_dp]) ); 

   im_Info->Canvas->LineTo( xmid + (int)(dx * (double)(wl_dp - 1)), ymid - 

(int)(dy * waveletReal[wl_dp - 1]) ); 

   im_Info->Canvas->Pen->Color = clRed; 

   im_Info->Canvas->MoveTo( (int)(dx * (double)wl_dp), ymid - (int)(dy * 

waveletIm[wl_dp]) ); 

   im_Info->Canvas->LineTo( (int)(dx * (double)(wl_dp - 1)), ymid - (int)(dy 

* waveletIm[wl_dp - 1]) ); 

  } 

// bereken convoluties en enveloppes 

  int dp = breedte; 

  while (dp < fSignalPool->nDatapoints - breedte) 

  { 

// convoluties 

   double convolutionReal = 0, 

          convolutionIm = 0; 

//   int dpPerPeriod = (wf_samplerate * (1.0 / f)); 

//   int nPeriods = (int)( (double)dp / (double)dpPerPeriod ); 

//   double wf_InstPhase = 2.0 * M_PI * ( (double)dp / (double)dpPerPeriod 

//    - (double)nPeriods ); 

   int availableWidth = fFunctions->min(fFunctions->min(breedte, dp), 

    fSignalPool->nDatapoints - dp); 

   for (int conv_dp = -availableWidth + 1; conv_dp < availableWidth; 

conv_dp++) 

   { 

    convolutionReal += waveletReal[abs(conv_dp)] * 

     fSignalPool->signalPool[s][dp + conv_dp]; 

    if (conv_dp != 0) 

    { 

     convolutionIm += (conv_dp / abs(conv_dp)) * waveletIm[abs(conv_dp)] * 

      fSignalPool->signalPool[s][dp + conv_dp]; 

    } 



    else 

    { 

     convolutionIm += waveletIm[abs(conv_dp)] * 

      fSignalPool->signalPool[s][dp + conv_dp]; 

    } 

   } // conv_dp 

// enveloppes 

// amplitude 

   amplitude[iF][s][dp] = correctie * sqrt( pow(convolutionReal, 2.0) + 

    pow(convolutionIm, 2.0) ); 

 

//phase 

 

   double period_t = 1.0 / f; 

   double dpPerPeriod = wf_samplerate * period_t; 

   double wf_InstPhase; 

   double dpPastPhaseZero = fmod( dp, dpPerPeriod ); 

   double fractionOfPeriod = dpPastPhaseZero / dpPerPeriod; 

   if (CBWFIP->Checked) 

   { 

    wf_InstPhase = fractionOfPeriod * 2.0 * M_PI; 

   } 

   else 

   { 

    wf_InstPhase = 0; 

   } 

 

   if (convolutionReal != 0) 

   { 

//    phase[iF][s][dp] = atan( convolutionIm / convolutionReal ) - 

wf_InstPhase; 

    phase[iF][s][dp] = acos( convolutionReal / ((1.0 / correctie) * 

amplitude[iF][s][dp]) ) - wf_InstPhase; 

    if (convolutionIm >= 0) 

    { 

     phase[iF][s][dp] *= -1; 

    } 

   } 

   else 

   { 

    nTimesConvRealZero++; 

    if (convolutionIm == 0) 

    { 

     phase[iF][s][dp] = 0.0 - wf_InstPhase; 

    } 

    else if ( convolutionIm > 0) 

    { 

     phase[iF][s][dp] = M_PI / 2.0 - wf_InstPhase; 

    } 

    else 

    { 

     phase[iF][s][dp] = 3.0 * M_PI / 2.0 - wf_InstPhase; 

    } 

   } 

 

   int analyzedDp = dp; 

   dp++; 



   while (dp < analyzedDp + sigmaT_dp * fractionOfSigmaT) 

   { 

    if (dp >= fSignalPool->nDatapoints) 

    { 

     break; 

    } 

    amplitude[iF][s][dp] = amplitude[iF][s][analyzedDp]; 

    phase[iF][s][dp] = phase[iF][s][analyzedDp]; 

    dp++; 

   } // while 

  } // dp 

  delete [] waveletReal; 

  delete [] waveletIm; 

  iF++; 

 }// iF 

 getParams(); 
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