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Figure 1: Precession

1 Introduction

The following text contains the current state of what I’ve pieced together about
MRI physics. It’s intended for people who’ve read a few sources and are trying
to get a little closer to the bottom of things. The following sources were used
heavily in this text.

http:////www.e-radiography.net//mrict//Basic MR.pdf
University Physics by Young and Freedman.
All You Need to Know About fMRI by Moriel NessAiver, from
http://www.simplyphysics.com/TEXTBOOK.HTM.
http://www.cs.unm.edu/b̃rayer/vision/fourier.html and
http://www.ebyte.it/library/educards/mri/K-SpaceMRI.html

2 Nuclei

2.1 Precession

The nucleus contains an atom’s protons and neutrons. In the case of a hydrogen
atom, the atom that is targetted by MRI, the nucleus consists of a single proton.
Protons have a property called spin which results in a tiny magnetic field. The
north - south axis of the field lies along the axis of spin. The proton can be
described as a bar magnet, and its field can be characterized by a magnetization
vector pointing in the direction of the north - south axis. In an external magnetic
field B0, the magnetization vector precesses around an axis aligned with the
magnetic fieldlines (see figure 1). All you Need to Know about MRI Physics
describes precession using a dreidel analogy: the axis along the length of the
dreidel doesn’t stand up straight, but its top end swings along a circle lying flat
in the air, with the centre of the circle lying on a vertical line rising from the
tip of the dreidel touching the ground. Alternatively, draw a circle in the air
using your finger without moving your hand.
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Every type of atom in a field of a given strength is associated with a unique
precession frequency for its protons. The frequency is related to the strength of
the external field B0 through the Larmor equation and the gyromagnetic ratio
of the nucleus γ [MHz / Tesla]:

ω = γB0.
For hydrogen, γ is around 50 MHz. So, in a two Tesla field, the magnetization

vectors of hydrogen nuclei will precess at around 100 MHz.

2.2 Spin-up and spin-down nuclei

The spin of a proton in an external, static magnetic field field has two energy
states: ‘spin-up’, in which case the magnetization vector is parallel, and ‘spin
down’ in which case the vector is anti-parallel to the external field. In a given set
of very many protons, the high and low energy state will be distributed roughly
equally, but with a slight excess of low energy state protons. The stronger the
magnetic field, the greater this spin excess (fewer protons ”have the energy to
go against the field”). The spin excess results in the net magnetization vector
(NMV), the sum of all the protons’ individual magnetization vectors. Because
more vectors are parallel than anti-parallel, the longitudinal component of the
NMV is non-zero. Because the precession phases of the magnetization vectors
are not synchronized, the transverse components of the vectors average out to
zero.

3 The radio-frequency pulse

At the descriptive level, what happens when a radio-frequency (RF) pulse is
emitted by the MRI machine is that the NMV is flipped towards the transverse
plane and rotates around the axis of the static magnetic field. However, to
understand the processes of relaxation, 180 degree flips for spin echoes, T1- and
T2-weighting discussed next, at least a useful lie about the relationship between
individual protons and the NMV must be established. The following sections
contain the best story I could put together at this point from various sources
and considerations. I hope at least the spirit of the explanation is correct.

The ‘pulse’ in ‘RF pulse’ refers to an electromagnetic wave generated by RF
coils in the MRI machine. The term radio-frequency refers to the wavelength
of the wave, which together with gradient fields allows the selection of slices of
nuclei. These concepts are the subject of the following sections.

3.1 Electromagnetic waves

Electromagnetic waves consist of electric and magnetic fields linked together
and propagating through space. Propagation means that the region of space in
which the fields exist grows. In vacuum, the wave propagates at the speed of
light. There is a second kind of movement involved in electromagnetic waves
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Figure 2: A travelling wave: a function of distance and time

such as radio-frequency pulses: the field strengths at points within the wave can
oscillate over time.

Electromagnetic waves arise from the interaction of changing electric and
magnetic fields, following from Maxwell’s equations for electromagnetism. These
four equations turn out to have a solution in the form of the travelling-wave
differential equation:

∂2y(x,t)
∂x2 = 1

v2
∂2y(x,t)

∂t2

To understand the equation, imagine a plane with time t as the vertical and
distance x as the horizontal axis, increasing from top to bottom and left to right
respectively (see figure 2: to see how the wave changes as time passes, move the
‘window’ downwards). We start off with all values y(x, t) at zero. Now start
a sinusoidal oscillation in the top-left corner. That is, we give the left-most
point a speed of 1 and make it oscillate over time. The acceleration of such a
change is d2sin(t)

dt2 = dcos(t)
dt = −sin(t). As soon as the value at y(0, 0) rises,

the acceleration becomes negative. The acceleration of y in the x direction is
now also negative by the wave equation, so the derivative of y in the x direction
will immediately start to decrease. We now have a non-zero value at y(0, δt),
that has smoothly generated a negative derivative as it rose. That means that
it must have lifted up neighbouring points (otherwise the function would be
discontinuous and the second derivative along the x-axis wouldn’t exist, let
alone fulfill the wave equation). Since these points are now also accelerating
in time, they also perturb their neighbourhood. Hence, the wave propagates
over space, with a speed dependent on the v parameter that relates spatial to
temporal acceleration.

After some time, a region of space will be covered by the wave. All points
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in this region will be oscillating with the frequency of the source oscillation
(the points of zero acceleration propagate with the same speed, preserving the
interval in time between them). However, the further points are from the source,
the more their acceleration will lag behind. At some distance, the lag will be
so great that the oscillation will return to the phase of the original again. Thus
spatial waves arise with a constant wavelength, dependent on both the frequency
of the source oscillation and the propagation speed.

Maxwell’s laws demand that the electric and magnetic fields satisfy the wave
equation, playing the role of y and hence pulsing or rippling outwards from an
oscillating source. The oscillations at points in the wave result in a wave of fields,
travelling along the direction of propagation. Since the propagation speed of
electromagnetic waves (in vacuum) is constant, the frequency of oscillation can
be described by the wavelength: the distance between peaks in the travelling
wave.

3.2 Electromagnetic waves and nuclei

An electromagnetic wave brings energy to the regions of space at which it arrives.
When the wave encounters a nucleus, whether anything happens depends on the
wavelength. If and only if the wavelength is such that the oscillations in the
field resonate with the precession frequency of the nucleus, two things happen.

The first effect is excitation, the transmission of energy to nuclei in the
lower energy state. The excitated nuclei go from the ‘spin-up’ to the ‘spin-
down’ state, reducing the spin excess and hence the longitudinal component of
the net magnetic vector, NMV.

The second effect of the pulse is to synchronize the precession phases of the
nuclei. The NMV itself swings around the axis of the magnetic field. In other
words, the NMV gains a transverse component, circling the axis of the static
field.

If exactly half the spin excess is excited, the NMV is zero in the longitudinal
axis and all the magnetization is transversal. This is called a ninety degree flip.

3.2.1 Problems

I have some problems with the above depiction. First, I can’t see any reason
for the transversal magnetization to be equal to the initial longitudinal NMV,
although this is generally how the ‘flip’ of the NMV is portrayed. As discussed
later, there are certainly effects of repeating RF pulses before the population of
excitated nuclei have reverted to the low-energy state. Yet there seems to be no
explanation for a relation between the loss of longitudinal and gain of transverse
NMV.

A further point of difficulty to me is that 180 degree flips are also possible
(see below), but this seems hard to relate just to exciting nuclei in the above
fashion.

An attractive alternative explanation would be that the angle of precession
increases in a number of discrete steps from, say, 35 to 145 degrees, as energy
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Figure 3: Speculative energy states of the precession angle

is transferred to the nucleus, and that spin-up nuclei become spin-down (and
hence change precession direction) if they absorb energy at their maximal angle.
This is not the standard explanation and could very well be completely off base
in terms of physics. However, so far, it’s the best story I can come up with to
explain the behaviour of the NMV and relate it to some kind of nucleic energy
state.

4 After the pulse

4.1 T1 and T2 relaxation

After the pulse is switched off, two processes occur. First, the energy transferred
to the protons is released again, and they return to their low-energy state. As
more and more protons release their energy, the spin excess and hence the NMV
aligned with B0 is recovered. This recovery is called T1 relaxation, and can be
described as an exponential recovery process with a time constant T1 in the
order of 1 s.

The second process is the dephasing of the protons’ precessions. Under
ideal conditions, this is due only to random spin - spin interactions. If one
proton moves towards another, its magnetic field may be aligned such that it
opposes or adds to the static magnetic field experienced by the other. Hence,
the proton will speed up or slow down due to the Larmor equation, and after
the protons move apart their phases will have changed. The mass effect of this
is the reduction of the transverse NMV. Dephasing is called T2 relaxation, and
can be described as an exponetial decay function with a time constant T2, in
the order of 10 ms.

Note that the two recovery processes are independent; in particular, they do
not preserve the length of the total NMV.
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4.2 T2* relaxation and the spin echo

Dephasing also occurs due to non-random inhomogeneities in B0, causing faster
dephasing than would be expected from spin - spin interactions alone. This is
called T2* relaxation. The effect of non-random dephasing can be cancelled by
using (e.g.) spin echoes, which bring back the signal to the T2 relaxation level.
Spin echoes are created by flipping the NMV by 180 degrees using a second pulse,
given after a period TE/2 following the initial pulse. After a second period of
TE/2, the regions with faster precession, which will have rotated further, will
have travelled back to the same phase as slower regions, travelling back at their
slower speed from a smaller rotation. Therefore the signal at TE, called the
spin echo, provides a true measure of the T2 relaxation at that time.

5 What gets measured?

The coils that emit the RF pulse serve as sensors after the emission. The sensors
measure the size of the transverse NMV. Due to the rotation of the transverse
NMV, two sensors placed at ninety degress to each other in the transverse plane
will experience oscillating magnetic fields (causing an alternating current in
sensor coils) with a ninety degree phase lag. The importance of this phase lag
is discussed in the text on K-space.

Whether the signal in the sensor coils is best described as an induced current
due to the changing magnetic field of the NMV, or as the RF energy released
and sent back by the excited nuclei, is not clear to me at this point.

6 Contrasts: T1 and TR, T2 and TE

Protons in different types of biological tissue have different values of T1 and
T2. By varying the echo time TE and repetition time TR (the interval between
RF pulses), the image from the MRI can be made to reflect contrasts between
regions with a high versus low density of a chosen tissue.

First, compare tissue A with a short T1, T1A and tissue B with a long T1,
T1B . Let TR be equal to the short T1A. Now, after an initial pulse, 63%
of the B0-aligned NMV in tissue A is recovered by time TR. Now let T1B be
long enough that, at TR, only 10% of its B0-aligned NMV has recovered. Both
tissues now receive a second RF pulse. Because the pulse ‘flips’ the longitudinal
NMV into the transverse plane, tissue A will now have a greater transverse NMV
than tissue B. The ‘flipping NMV’ model describes what happens, but the causes
must have to do with the energy states due to the preceding pulse or pulses.
One explanation is that roughly the same protons tend to be excited, due to
the temperature of their immediate environment for instance. If the first pulse
led to a ninety degree flip from an initial state of 35 degrees precession angle,
an immediate second pulse would tend to ”click” the same protons through to
their 145 degree energy state (in my speculative model), and result in a smaller
transverse NMV than the first.
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In any case, by choosing a TR such that tissue A can recover its longitudinal
NMV while tissue B has only recovered a little, tissue A and B will generate
high and low signals respectively. Such an image is called T1-weighted: two
regions with different T1’s will have different signal strengths.

Second, compare tissue C with a short T2 and tissue D with a long T2. Now,
if we lengthen TE, the protons in tissue C will dephase faster and hence tissue
D will retain the stronger signal. Thus by choosing a long T2, at which signal
from D is still strong but signal from C has decayed, a T2-weighted image can
be made. Such an image will show high signal intensity for tissue D and low
for tissue C, in other words, the contrast between C and D will be high if they
have different T2’s.

Say we have tissue X, with long T1 and long T2, and tissue Y with short
T1 and short T2. To give X as much of an advantage over Y as possible, we’d
use a long TR (so that X can recover its longitudinal NMV) and a long TE (so
that the T2 decay in Y has weakened its signal).

7 Slice-selection

Recall that the precession frequency ω of nuclei depends on the strength of the
static magnetic field, B0. The relation is given by the Larmor equation:

ω = γB0,
where γ is the gyromagnetic ratio of the nucleus. Each atom has a unique

gyromagnetic ratio. For protons (hydrogen atoms), γ is 42.56 MHz / Tesla.
When a gradient is imposed on B0, that is, when the strength of B0 is made
to decline linearly from e.g. head to feet, the Larmor equation shows that the
precessional frequencies will also run from high to low along the direction of the
gradient. Gradients are imposed using additional coils to modulate B0.

Due to the gradient, the resonance frequency of nuclei is different for every
slice of the body along the gradient. By fine-tuning the frequency of RF pulses,
they will only excite nuclei from a specific region of space. All subsequent
processes, such as frequency encoding within the slice (as will be discussed in
the context of K-space), will therefore only result in measureable effects from
the initially excited slice. The above is called slice selection.

8 K-space

K-space is the 2D Fourier representation of the signal intensities distributed over
a slice in the MRI scanner. What this means and how it helps get information
on the signal from a specific point in a slice out of the summed NMV is the
subject of the next sections.

8.1 Fourier representations in 1 and 2D

So what’s a Fourier representation? In 1D, you have a signal sampled at N
points, and the Fourier transform describes this signal as a set of N cosines of
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Figure 4: Adding 1D Fourier components

increasing frequencies, each with an amplitude and a phase parameter. When
added together, the cosines result in the original signal. The spectrum just
plots the amplitude against the frequency of each cosine. The cosines have
frequencies running from 0, 1

T to N
T , where T is the time of the signal. Each

frequency is 1
T higher than the preceding one. What the amplitude spectrum

doesn’t show is the phase of each cosine, which might well be of secondary
interest anyway. As an example, if my spectrum is all zeroes except for a 1 for
the 3 Hz cosine and a 2 for the 5 Hz cosine, then the signal is the weighted sum
cos(2π3t) + 2cos(2π5t). So, for instance, say you add a random blip to your
spectrum. Then the signal it encodes will suddenly include some additional
oscillation. So going from a Fourier representation to your signal is very simple:
you just add cosines, weighted by the amplitudes, and shifted by the phases. The
maths of going from the signal to the Fourier representation involves nothing
more obscure than integration and really just measure how much your signal
looks like a cosine of frequency ω and how much like a sine of frequency ω. If the
signal looks just like a cosine and not at all like a sine, the phase must be 0; if
it looks exactly opposite to a cosine and just as much like a sine only in-phase,
then the phase must be 135 degrees. And so forth. For an intuition of this,
draw some vectors on a unit circle and see how large their projections onto the
horizontal (called real in Fourier analysis, or in-phase) and vertical (imaginary
or out-of-phase) axes are.

Finally, note that the familiar graphical representation of an oscillation over
time of a cosine would in reality be measured by a sensor sitting at one point
somewhere, sampling a signal, that could also sit at a single point in space,
increasing and decreasing in amplitude as time passes. Think of a clock on a
tower, where our signal over time is the changing length of the shadow of its
hour hand on the ground.

So what is Fourier transformation in two dimensions? Instead of building
a signal from cosines, we’ll now build it from sheets of cosines. These sheets
are filled in with cosines, not with 2πωt as input as in a 1D signal, but with
ω1t1+ω2t2. The cosine now looks like this: cos(2π(ω1t1+ω2t2)), which is a two-
dimensional function because of the two variables t1 and t2 that are required as
input. So for every combination of frequencies ω1 and ω2, we have for each value
of t2 a cosine over t1 of frequency ω1 with a phase shift dependent on ω2 and
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Figure 5: A single 2D-Fourier component

the current value of t2. The 2D Fourier representation contains two numbers for
each combination of frequencies, just as it did in 1D Fourier analysis for every
frequency. These numbers still reflect amplitude A and phase φ of the cosine:
the function with parameters becomes A cos(2π(ω1t1 + ω2t2) + φ). The same
information is given by two amplitudes A1 and A2, one for a cosine and one for
a sine of the specified frequencies (as above, the combination of similarities with
the cosine and sine components provides the phase).

Plotting the two input variables t1 and t2 as spatial x and y axes, such
a ‘building block’ sheet consists of a stripe pattern (see figure 5). The value
of the sheet for frequency-combination (ω1, ω2) with amplitudes A1 and A2 at
time / position (x, y) is A1 cos(2π(ω1x + ω2y)) + A2 sin(2π(ω1x + ω2y)). This
2D-to-value mapping, or sheet of values, is the 2D analogy of the cosine ‘basis
functions’ in 1D Fourier transformations. The original matrix is built up from
the sum of all such stripe patterns.

Determining the parameters A1, A2 from the original data uses the same
similarity measurements. For every combination of frequencies (ω1, ω2), a pat-
tern can be compared to the cos(2π(ω1x + ω2y) and to the sin(2π(ω1x + ω2y)
sheets. If the signal has the same direction and spatial frequency as the cosine
sheet, it will be highly similar to that, and not at all similar to the sine sheet.
Imagine the signal as vertical blocks rising various heights over a chessboard.
The reference sheets consist of diagonal lines of blocks rising above and below
the plane. Multiplying the signal and reference heights at each block results in
a a new landscape. The new blocks will be strongly positive if both the signal
and reference were either both positive or both negative, negative if their sign
was different, and close to zero if either was close to zero. Adding up all the
heights provides a number that reflects the similarity.
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The spectrum is now a matrix showing just the overall amplitude per combi-
nation of frequencies. So a single entry in the matrix represents not just a time
signal, like a single blip in a 1D spectrum, but a sheet of diagonal stripes (again,
there’s also some phase shift of the pattern which cannot be known from just
the amplitude). A website I just came across mentioned that the stripe pattern
of a given point in the spectrum matrix oscillates in the same direction as the
direction to the point in the matrix from the centre of the matrix (where fre-
quencies (0, 0), or the overall mean of the data, is stored). That seems to make
sense: if the vertical frequency is twice as high as the horizontal, the stripes will
be ”stretched” vertically. Stripy patterns are an artefact that can occur in MRI
images, since the whole pattern only needs a single error-blip in K-space (see
below).

Again, we’ve been looking at a spatial representation of oscillations, which
would be a suitable representation when e.g. the data are already present in
Matlab. In measurement situations, perhaps a sensor array would be used, if
one dimension is time and the other a spatial dimension. In the case of MRI,
the rotation of the NMV is exploited and the signal consists of the components
of the transverse NMV in the direction of two perpendicular sensor coils. This
is explained further in the next section.

So K-space is just the 2D Fourier representation of a two-dimensional pat-
tern. The MRI machine, due to the way gradients work, directly receives the
values of elements of K-space. How this works is the subject of the next section,
but that’s about acquiring the values of K-space. What K-space is is simply a
collections of stripy patterns of different frequency-combinations, of which the
sum provides the spatial distribution of signal intensity over voxels.

8.2 Filling in the values of K-space

So now we know what K-space is. The clever thing about MRI is that the
signals recieved by the machine are values in K-space. The machine is physically
performing the 2D Fourier transformation. The way it does this is by imposing
gradients in the magnetic field in combinations of directions. As I’ll illustrate,
this leads to sheets with waves in a given direction, with a spatial frequency
that increases at every time step.

8.2.1 Spatial frequency at time steps, temporal frequency at points
in space

To illustrate this phenomenon, I’ll first use a 1D example (see figure 6). Take a
line of length L on which lie points that have a value that oscillates over time.
The points oscillate at frequencies running from − 1

2
1

∆t Hz to + 1
2

1
∆t Hz from

left to right, for some period ∆t. At t = 0 the vector is flat. Now take a step
forwards to t = ∆t. Now the end points will have completed half an oscillation:
on the left, the point has gone down and back up to zero, on the right the
point has gone up and then back down to zero. The middle point doesn’t move;
since its frequency is zero. The points at 1

4 length from the end points are
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Time step 1

Time step 2

Time step 3

Figure 6: Frequency distribution to spatial pattern in 1D

at 90 degrees of their period, one at -1 the other at +1. The other points lie
between these extremes, leading to a spatial wave of period L lying over the
line. Now take another step forward, and see what happens. The endpoints and
the middle point still end up or remain at zero. But now the quarter points are
also at zero, and the one-eights points are at their extremes of + and -1. The
frequency of the curve over the line is now at 2

L . In general, after N steps in
time, the points oscillating in time produce a spatial oscillation of frequency N

L .
So at every time step, a comparison of the spatial pattern over the line

with another 1D distribution of values will extract similarities of the new, ”in-
put” curve with spatial oscillations of an increasing frequency in the ”reference”
curve. This kind of comparison involves two parts. First, take the product of
the two vectors ( i.e. the list of values over the line) and then take the area
under the curve of their product (the areas of regions of values below and above
zero get a negative and positive sign respectively). In mathematical terms, tak-
ing the area is integration: for ever smaller segments of line, get the area of
the rectangle above or below that segment, using the mean value of the signal
over the segment as height. The more similar the vectors, the higher the area
(consider how positive values would then map to positive values, and negative
to negative, leading to only highly positive values in the product and therefore
a large area; similarly, perfectly opposite vectors would lead to a negative but
still large area). Second, shift one of the vectors so it’s 90 degrees out of phase
with its original and repeat the similarity measurement. This gives us the two
numbers we need for the Fourier representation for the frequency of the input
curve. So if we just start at t = 0, let the points of the reference signal oscil-
late, and compare every 1

∆t seconds, we will, point by point, fill in the Fourier
representation of the input signal.

In 2D, exactly the same can be done, except now there is a matrix of points

12



Figure 7: Frequency distribution to spatial pattern in 2D

and frequency increases from left to right and from top to bottom. This leads
to the stripy sheets that are the building blocks of 2D Fourier representations.
For every combination of frequencies for the left and right direction, the stripes
run in the direction determined by the ratio of the frequencies. The spatial
frequency in that direction increases, just as in the 1D case, over time steps (see
figure 7).

8.2.2 Setting up spatial frequencies using gradients and filling in
K-space

Now, how do these 2D Fourier calculations get performed in the MRI machine?
The first step is slice selection: a gradient is imposed that linearly modulates the
magnetic field strength in the Z direction (head-to-feet for instance, though not
necessarily). Due to the gradient, the resonance frequency will be dependent
on Z-position, and so an RF pulse of a given frequency band will only flip the
magnetic moments of a specific slice of nuclei into the transverse plain. Within
this slice, the Y-axis is subjected to a second gradient. The Y-axis is then said
to be frequency encoded. The final, X axis, will effectively also get a frequency
gradient, but using a different method called phase encoding. It goes like this.
The strength of the Y and X gradients, and hence the direction of the stripy
reference pattern that will be imposed on the slice, are chosen at t = 0. The
MRI machine can only detect the summed signal from all the voxels in the
slice, but it does so using perpendicular sensors in the transverse plane of the
magnetic field. The ‘stripy pattern’ in this case specifies the precession phase
at a given location, in other words, whether a sensor in a given direction will
detect that locations signal. So, in terms of the chessboard landscape analogy
of the previous section, the pattern provides the block-by-block multiplication
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relative to a sensor that detects signals with phase 0 degrees as positive and
phase 180 degrees as negative. The summation is done simply by virtue of the
sensory picking up the summed magnetization from all locations in the slice.
The second, perpendicular sensor detects the similarity of the pattern with the
signals at plus and minus 90 degree phase, i.e. the NMV the first sensor would
measure after a ninety degree rotation. This is equivalent to saying that the
second sensor receives the comparison of the same signal as the first, but with
a phase-shifted reference pattern. Thus the two sensors provide the cosine and
sine similarities of the pattern of signal intensity with the imposed patterns of
the specified direction and spatial frequency.

Of course, at t = 0 the gradients haven’t yet been turned on, so the reference
pattern is flat, and the similarity measures simply provide the sum, and hence,
after normalizing, the mean intensity value. This value gets stored at position (0,
0): both frequencies are zero. Now we take a time step. The frequency encoded
gradient exerts its effects during this time, since its constantly effecting the
frequencies along its axis. The phase-encoded direction in contrast only bumps
the phase of nuclei along its axis between time point. Effectively, this results in a
higher frequency over time points - a voxel undergoing double the phase bump
every time step undergoes a doubling of the effect on its frequency - exactly
the same as the frequency encoded axis. Now, at t = ∆t, the spatial waves
arise, and at all subsequent steps their frequency increases. At each time step,
the similarity with the currently imposed pattern is directly measured by the
sensors and then stored, filling in K-space point by point.

So for a given combination of X and Y gradient strengths, the reference pat-
tern lies in a specific direction, and the spatial frequency of that pattern increases
per time step. So the collected values of K-space get placed on a line radiating
out from zero, at ever more peripheral positions as time goes on. The frequency
combinations will be (0, 0), (X 1

LX
, Y 1

LY
), (2X 1

LX
, 2Y 1

LY
), (3X 1

LX
, 3Y 1

LY
) and

so forth, until the gradient strengths are changed, so the direction of the spatial
pattern changes, and the line being filled veers off in a different direction in
K-space. (Some literature suggests that it is rows of K-space that are filled,
not lines radiating from zero in all directions. Filling in a row would require
constant modulation of one the gradients however.)

Eventually, enough points of K-space get filled in for a sufficient reconstruc-
tion of the spatial image to be possible. At heart, these are matrix operations,
turning one matrix into another matrix. The dimensions of the spatial matrix
need to be stored separately; by itself K-space doesn’t know how big the slice
it’s representing is. By spreading out the gradients over a larger region, more
of the body can be imaged, at the cost of the steepness of the slope.

14


